Cl(-)-dependent secretory mechanisms in isolated rat bile duct epithelial units.
نویسندگان
چکیده
Cholangiocytes absorb and secrete fluid, modifying primary canalicular bile. In several Cl(-)-secreting epithelia, Na(+)-K(+)-2Cl(-) cotransport is a basolateral Cl(-) uptake pathway facilitating apical Cl(-) secretion. To determine if cholangiocytes possess similar mechanisms independent of CO2/HCO, we assessed Cl(-)-dependent secretion in rat liver isolated polarized bile duct units (IBDUs) by using videomicroscopy. Without CO2/HCO, forskolin (FSK) stimulated secretion entirely dependent on Na(+) and Cl(-) and inhibited by Na(+)-K(+)-2Cl(-) inhibitor bumetanide. Carbonic anhydrase inhibitor ethoxyzolamide had no effect on FSK-stimulated secretion, indicating negligible endogenous CO2/HCO transport. In contrast, FSK-stimulated secretion was inhibited approximately 85% by K(+) channel inhibitor Ba(2+) and blocked completely by bumetanide plus Ba(2+). IBDU Na(+)-K(+)-2Cl(-) cotransport activity was assessed by recording intracellular pH during NH4Cl exposure. Bumetanide inhibited initial acidification rates due to NH entry in the presence and absence of CO2/HCO. In contrast, when stimulated by FSK, a 35% increase in Na(+)-K(+)-2Cl(-) cotransport activity occurred without CO2/HCO. These data suggest a cellular model of HCO-independent secretion in which Na(+)-K(+)-2Cl(-) cotransport maintains high intracellular Cl(-) concentration. Intracellular cAMP concentration increases activate basolateral K(+) conductance, raises apical Cl(-) permeability, and causes transcellular Cl(-) movement into the lumen. Polarized IBDU cholangiocytes are capable of vectorial Cl(-)-dependent fluid secretion independent of HCO. Bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransport, Cl(-)/HCO exchange, and Ba(2+)-sensitive K(+) channels are important components of stimulated fluid secretion in intrahepatic bile duct epithelium.
منابع مشابه
Intracellular pH regulation in isolated rat bile duct epithelial cells.
To evaluate ion transport mechanisms in bile duct epithelium (BDE), BDE cells were isolated from bile duct-ligated rats. After short-term culture pHi was measured with a single cell microfluorimetric set-up using the fluorescent pHi indicator BCECF, and calibrated with nigericin in high K+ concentration buffer. Major contaminants were identified using vital markers. In HCO3(-)-free media, basel...
متن کاملIsolation of functional polarized bile duct units from mouse liver.
The development of genetically altered murine animals has generated a need for in vitro systems in the mouse. We have now characterized a novel isolated bile duct unit (IBDU) preparation from the mouse to facilitate such studies. The mouse IBDU is isolated by portal perfusion of collagenase, blunt dissection, further enzymatic digestions, filtering through sized mesh, and culturing on Matrigel ...
متن کاملThe function of alkaline phosphatase in the liver: regulation of intrahepatic biliary epithelium secretory activities in the rat.
We studied the effects of alkaline phosphatase (AP) on the secretory processes of the rat intrahepatic biliary epithelium as well as the role of the intrahepatic biliary epithelium in the uptake and biliary secretion of exogenous AP. The effects of acute and chronic administration of AP on bile secretory parameters were investigated in vivo in normal and bile duct ligated (BDL) rats and in vitr...
متن کاملIdentification and functional characterization of TMEM16A, a Ca-activated Cl channel activated by extracellular nucleotides, in biliary epithelium
Cl channels in the apical membrane of biliary epithelial cells (BECs) provide the driving force for ductular bile formation. While CFTR has been identified in BECs and contributes to secretion via secretin binding basolateral receptors and increasing [cAMP]i, an alternate Cl secretory pathway has been identified that is activated via nucleotides (ATP, UTP) binding apical P2 receptors and increa...
متن کاملStimulation of bile duct epithelial secretion by glybenclamide in normal and cholestatic rat liver.
Cholestasis is a cardinal complication of liver disease, but most treatments are merely supportive. Here we report that the sulfonylurea glybenclamide potently stimulates bile flow and bicarbonate excretion in the isolated perfused rat liver. Video-microscopic studies of isolated hepatocyte couplets and isolated bile duct segments show that this stimulatory effect occurs at the level of the bil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 281 2 شماره
صفحات -
تاریخ انتشار 2001